THE FISK (W) RADIOLA

Models 85, 91, 195, 200 and 312

FIVE VALVE, TWO BAND, A.C. OPERATED SUPERHETERODYNES

Technical Information & Service Data

ELECTRICAL SPECIFICATIONS.

TUNING RANGES "Standard Medium W	'ave''1600-550 K.	C.		NMENT SETTING ndard Medium '		K.C. (Osc.), 1500 K.C. (Osc. and Aer.	.1
"Short Wave"—	13.65-45 M.		''Sho	rt Wave''—15		nd Aer.)	',
INTERMEDIATE FREQUENCY POWER SUPPLY RATING						455 K.C. 200-260 V. 50-60 Cycle	25
TOWER SOTTET TO THIS		h other voltage				200 200 11 00 00 0,010	
POWER CONSUMPTION		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************			75 watts	
VALVE COMPLEMENT (1) 6J8G Frequency (2) 6U7G I.F. Amplifi	Converter er	(5) 5Y3G	(3) (4) Rectifier	6B6G 2nd Det 6V6G Output	., A.V.C. an	d A.F. Amp.	
CONTROLS (Models 85, 195	and 312)	, ,					
		TUNING CONTROL	SQUALES (MATERIAL TRACES)			MED WAVE	
	MED WAVE . SHORT WAVE		s	rond		PHONO SHORT WAVE	

Models 85 and 195.

Model 312.

CONTROLS (Models 91 and 200).

In the Models 91 and 200, the controls, while performing the same functions as those shown above for the Models 85 and 195, are arranged differently. Concentric knobs are replaced by three single knobs on the cabinet front which from left to right control Tone, Volume and Range. The Tuning Control is situated in the normal position at the side of the cabinet, but is not the dual ratio type.

LOUDSPEAKER—Models 85 and 91—7-inch, Type AW4, Models 195, 200, and 312—12-inch, Type AS8. Loudspeaker Transformer—Type AW4-XA1. Type AS8-TX20 Field Coil Resistance, 1500 ohms
Voice Coil Impedance—Type AW4—3 ohms at 400 c. Type AS8—2.2 ohms at 400 c.

UNDISTORTED POWER OUTPUT 4.2 watts
DIAL LAMPS 6.3 v., 25 amp.

INTRODUCTION.

The cabinet style of these models is as follows:—Models 85 & 91, Table; Models 195 and 200, Console; Model 312, Radio-Gramophone Combination. The latter is of revolutionary design, the lower section of the cabinet withdraws, revealing the gramophone turntable and pick-up. When closed, the gramophone section is entirely concealed, and the cabinet takes on the appearance of a normal console.

As is the case with all other models released in the 1940 range, one of the most striking features is the unique chassis layout. In these receivers the valves are most accessible, as they are arranged

in line at the rear of the chassis in the same sequence as they appear on the circuit diagram. By careful placement of other components, efficiency has been liminated, and a big improvement has resulted both in performance and from a servicing aspect.

A feature of the Models 85, 195 and 312 is the dual ratio tuning drive. This drive has two ratios; one, $2\frac{1}{2}$ to 1, providing a quick shift to any position on the dial, and the other, 58 to 1, providing vernier tuning for one revolution of the knob.

ALIGNMENT PROCEDURE.

Alignment should only be necessary when adjustments have been altered from the factory setting or when repairs have been made to the tuned circuits. Climatic conditions should not seriously affect the receiver.

It is important to apply a definite procedure, as tabulated, and to use adequate and reliable test equipment. Instruments ideally suited to the requirements are the A.W.A. Junior Signal Generator, Type 2R3911, or the A.W.A. Modulated Oscillator, Type C1070. An output meter is necessary with both these instruments. If the Type C1070 test oscillator is used, see that a 250,000 ohms resistor is connected between the output terminals and, for Short Wave alignment, a 400 ohms non-inductive resistor in series with the active output lead of the instrument.

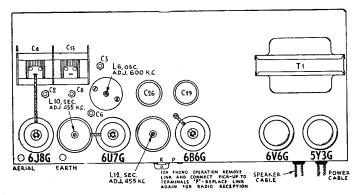
Connect the ground connection of the test instrument to the receiver chassis.

Perform alignment in the proper order, starting from No. I and tollowing all operations across, then No. 2, etc. Adjustment loca-

tions are shown in the layout diagrams. Keep the Volume Control set in the maximum clockwise position, and regulate the output of the test instrument so that a minimum signal is introduced to the receiver to give a standard indication on the output meter. This will avoid A.V.C. action and overloading.

When the receiver has been satisfactorily aligned, seal the adjusting screws with a small quantity of celluloid cement to eliminate the possibility of them shifting and also to indicate whether they have been tampered with after servicing.

ADJUSTING TOOLS.


Two tools, which have been specially designed for alignment purposes, may be obtained from the Service Department of the Company. One is for adjusting and locking air-trimmer condensers, and the other is a non-metallic screwdriver for adjusting the cores within the I.F. transformers and the broadcast oscillator coil. The part number of the former is No. 5371 and the latter No. 5372.

ALIGNMENT TABLE

Alignment Order.	Test Inst. Connection to Receiver.	Test. Inst. Setting.	Receiver Dial Setting.	Circuit to Adjust.	Adjustment Symbol.	Adjust to Obtain
1	*6J8G Grid Cap	455 Kc/s.	Past 550 Kc/s.††	2nd I.F. Trans.	LI2	Max. (Peak)
2	*6J8G Grid Cap	455 Kc/s.	Past 550 Kc/s.††	2nd I.F. Trans.	LII	Max. (Peak)
3	*6J8G Grid Cap	455 Kc/s.	Past 550 Kc/s.††	lst I.F. Trans.	LIO	Max. (Peak)
4	*6J8G Grid Cap	455 Kc/s.	Past 550 Kc/s.††	Ist 1.F. Trans.	L9	Max. (Peak)
		Repeat the	above adjustments be	fore proceeding.		
5	Aerial Term	600 Kc/s.	600 Kc/s.†	Oscillator	Core L6	Max. (Peak)
6	Aerial Term	1500 Kc/s.	1500 Kc/s.	Oscillator	C6	Max. (Peak)
7	Aerial Term	1500 Kc/s.	1500 Kc/s.	Aerial	C2	Max. (Peak)
		Rep	eat adjustments 5, 6,	and 7.		
8	Aerial Term	15M.	15M.	Oscillator	C8	Max. (Peak)**
9	Aerial Term	15M.	15M.‡	Aerial	C3	Max. (Peak)***

^{*} With grid clip connected. A .001 mfd. condenser should be connected in series with the active output lead of the test instrument.

^{††} With tuning condenser plates in full mesh.

Layout Diagram-Top View.

SOCKET VOLTAGES.

			Screen		ы.	
VALVE		Bias Volts	Chassis	Chassi	o Plate Current M.A.	Heater Volts
6J8G Converter M.W.		-3*	95	255	1.3	6.3
S.W.		-3	95	255	1.3	
Oscillator M.W.			_	160	5.0	
s.w.				160	5.0	
6U7G I.F. Amplifier M.W.		-3*	95	255	8.0	6.3
S.	W.	-3*	95	255	8.0	—
6B6G 2nd Detector		0	-	125*	0.52	6.3
6V6G Output		-12.5*	255	242	44.0	6.3
5Y3G Rectifier 800/400	vol	ts, 75	M.A.	Total o	urrent,	5.0.

^{*}Cannot be measured with ordinary voltmeter.

Measured at 240 volts, A.C. supply. No signal input. Volume Control at maximum.

[†] Rock the tuning control back and forth through the signal. Reset the dial pointer to 600 Kc/s., if necessary. The pointer is soldered to the control wire and may be moved by applying a hot soldering iron to the connection.

^{**} Use minimum capacity peak if two peaks can be obtained.

^{***} Use maximum capacity peak if two peaks can be obtained. Check for image signal by tuning the receiver to approx. 16M. It may be necessary to increase the output of the test oscillator to receive the signal.

[‡] Rock the tuning control back and forth through the signal.

GRAMOPHONE MOTOR AUTOMATIC STOP ADJUSTMENT (MODEL 312).

Two types of motors are used in this Receiver, namely "Collaro" and "Garrard," and as the adjustment is different for each, first identify the motor in question before proceeding. The trade marks for the "Collaro" and "Garrard" are on the motor board and pick-up, respectively.

"COLLARO" ADJUSTMENT.

The Automatic stop is set at the factory to suit standard records. If adjustment becomes necessary, loosen the stop adjustment screws and adjust the trip lever so that the pick-up arm comes in contact with the lever when the needle enters the continuous track outside the record label.

"GARRARD" ADJUSTMENT.

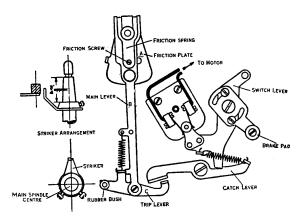
The Patent Stop and Switch is fully automatic.

As the needle travels towards the centre of the record, the Pickup Arm moves Friction Plate A (see diagram) which, through the friction pad and spring, carries with it the Main Lever B and Trip Lever C

This Main Lever moves in towards the Turntable Spindle on which is mounted the striker, which gently wipes against the rubber bush on end of Trip Lever C at every revolution, thus tapping back the Main Lever B (the friction between Lever A and Lever B allows this).

The "tapping back" process continues until the needle reaches the "run-in" groove in the centre of the record. The trip lever is now moved forward into the path of the striker, which strikes the side of the lever and trips the Stop mechanism.

If Stop fails to operate at finish of record, there is probably insufficient friction between Lever A and Lever B. This may be rectified by turning the friction screw in lever B in a counterclockwise direction.

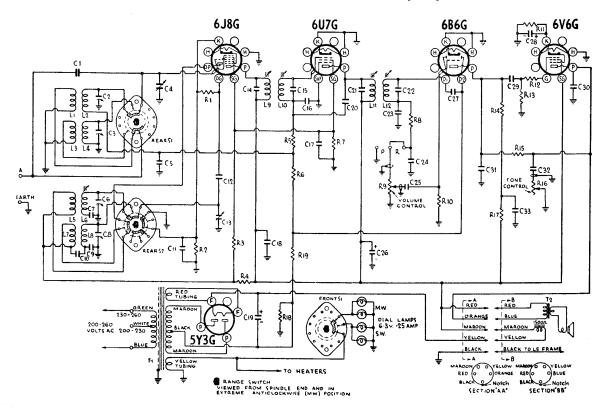

When Stop operates early, i.e., before needle reaches the end of the record, the trouble is either due to excessive friction or to the rubber bush on the trip lever being worn. Friction can be reduced by turning the friction screw clockwise.

As this adjustment is very sensitive, the screw should not be turned more than a quarter of a turn at a time. Excessive friction may cause a knocking sound to be heard in the loudspeaker and undue wear on records.

When the rubber bush is worn, this may be turned round on its pin to expose a new face to the striker.

A brake pad is provided which is automatically applied to the turntable rim after switching off. It can be adjusted by loosening the two screws securing the brake pad lever. After adjustment, it is important to verify that the switch breaks contact before brake operates.

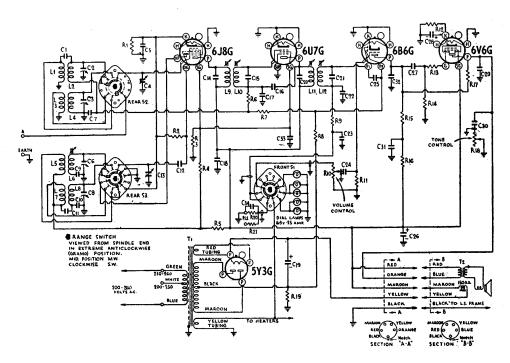
Loudspeaker Cone Assembly-Models 195, 200 and 312 7071



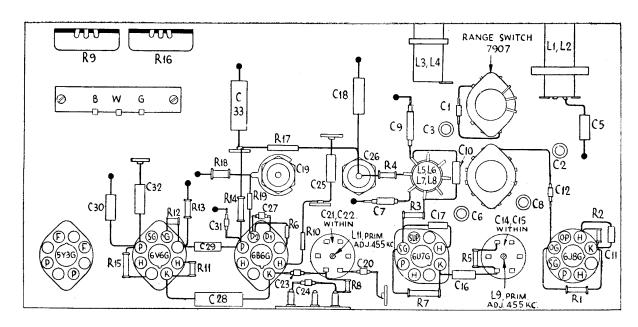
"Garrard" Automatic Stop Mechanism.

MECHANICAL REPLACEMENT PARTS

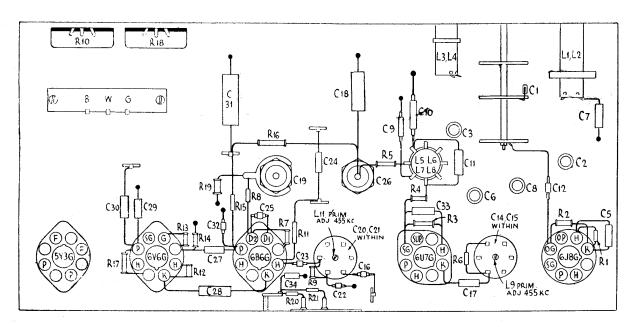
TUNING MECHANISM.	MISCELLANEOUS.				
DESCRIPTION	Part No.	DESCRIPTION	Part N		
Pointer and Saddle, with Drive Wire	6629	Range Switch—85, 91, 195 and 200	7907		
Drive Wire Tension Spring		Range Switch—312	8109		
		Power Cable	209		
Drive Wire Jockey Pulleys—Large		Loudspeaker Cable	6465		
Drive Wire Jockey Pulleys—Small	7885	Tuning Knob	8075		
Pointer Drive Drum	8030	Tuning Knob Clip	7686		
Main Drive Segment		Range Switch Knob—Outer	5625		
		Range Switch Knob—Inner	4589		
Main Drive Spindle Assembly	8035	Volume-Tone Control Knob—Outer	5625		
Intermediate Drive Gear Assembly	8037	Volume-Tone Control Knob—Inner	4589		
Dial Scale	8154	Knob Clips	7929		
Dial Lamp Sockets		Valve Sockets (4)	4704		
Dial Lamp Sockers		Valve Socket (Cushion)	7327		
		Valve Clips	7459		
		Loudspeaker Cone Assembly—Models 85 and 91	8588		


CIRCUIT DIAGRAM AND CODE-MODELS 85, 91, 195 AND 200

NOTE:-Pick-up terminals, shown in the circuit diagram, are not provided in the Models 91 and 200.


Code No.	Part No. COILS.	R8	50,000 ohms 1/3W	C12	70 mmfd mica (N)
L1, L2	7974 Aerial Coil 1600-550 K.C.	R9 7903	500,000 ohms Vol. Cont.	C13 7985	Tuning Condenser
L1, L2 L3, L4	7975 Aerial Coil 13.6-45M	R10	10 megohms 1W	C14	70 mmfd mica (N)
L5, L6	9145 Osc. Coil 1600-550 K.C.	RII	250 ohms 3W	C15	70 mmfd mica (N)
L7, L8	9145 Osc. Coil 13.6-45M	R12	50,000 ohms 1/3W	C16	.01 mfd paper
	8286 1st I.F. Transformer	R13	500,000 ohms 1/3W	C17	.1 mfd paper
•	8287 2nd I.F. Transformer	R14	250,000 ohms 1W	C18	.1 mfd paper
	ior to 1-5-40 oscillator coil, No.	R15	1.75 me gohms IW	C19	16 mfd, 500V. electrolytic
7977	was used.	R16 7902	100,000 ohms Tone Cont.	C20	4 mmfd mica
	TRANSFORMERS.	R17	20,000 ohms IW	C21	70 mmfd mica (N)
TI	7979A Power Transformer 50-	R18	40 ohms 3W	C22	70 mmfd mica (N)
11	60C	R19	2.3 megohms 1/3W	C23	110 mmfd mica (L)
TI	7981A Power Transformer 40C	Code Part		C24	110 mmfd mica (L)
T2	XAI Loudspeaker Transformer (85, 91)	No. No.	CONDENSERS.	C25	.01 mfd paper
Т2	TX20 Loudspeaker Transfor-	CI	4 mmfd mica	C26	16 mfd 350V, regulating elec-
12	mer (195, 200)	C2 3661	2-20 mmfd air trimmer		trolytic
Code Part		C3 3661	2-20 mmfd air trimmer	C27	50 mmfd mica (D)
No. No.	RESISTORS.	C4 7985	Tuning Condenser	C28	25 mfd 25V. electrolytic
RI	50,000 ohms 1/3W	C5	.05 mfd paper	C29	.02 mfd paper
R2	350 ohms 1/3W	C6 3411A	All-29 mmfd air trimmer	C30	.0025 mfd paper (195, 200) .015 mfd paper (85, 91)
R3	8000 ohms 1W	C7	440 mmfd mica (padder)	C31	200 mmfd mica (J)
R4	6000 ohms 2W	C8 3658	2-10 mmfd air trimmer	C32	.1 mfd paper
R5	100,000 ohms 1/3W	C9	4000 mmfd mica (padder)	C33	.5 mfd paper
R6	1.75 megohms 1/3W	C10	.05 mfd paper		
R7	20,000 ohms W	CII	.05 mfd paper		

CIRCUIT DIAGRAM AND CODE-MODEL 312



NOTE:—Condenser C1 is incorrectly shown. It should be connected between the aerial terminal and the control grid of the 6J8G, as in the Circuit Diagram overleaf.

Code	Part	R9	50,000 ohms 1/3W	C10	4000 mmfd mica (padder)
No.	No. COILS.	R10 7903	500,000 ohms Vol. Cont.	C11	.05 mfd paper
	7974 Aerial Coil 1600-550 K.C.	RII	10 megohms 1W	C12	70 mmfd mica (N)
L3, L4	7975 Aerial Coil 13.6-45M	R12	250 ohms 3W	C13 7985	Tuning Condenser
L5, L6	9145 Osc. Coil 1600-550 K.C.	R13	50,000 ohms 1/3W	C14	70 mmfd mica (N)
L7, L8	9145 Osc. Coil 13.6-45M	R14	500,000 ohms 1/3W	C15	70 mmfd mica (N)
L9, L10	8286 1st I.F. Transformer	R15	250,000 ohms IW	C16	4 mmfd mica
	8287 2nd l.F. Transformer	R16	20,000 ohms !W	C17	.01 mfd paper
	or to 1-5-40 oscillator coil, No. vas used.	R17	1.75 megohms IW	C18	.1 mfd paper
		R18 7902	100,000 ohms Tone Cont.	C19	16 mfd 500V. electro.
	TRANSFORMERS.	R19	40 ohms 3W	C20	70 mmfd mica (N)
TI 7979A Power Transformer 50- 60C		R20	50,000 ohms 1/3W	C21	70 mmfd mica (N)
Ti	7981A Power Transformer 40C	R21	20,000 ohms 1/3W	C22	110 mmfd mica (L)
	TX20 Loudspeaker Transfor-		20,000 0 1,2	C23	110 mmfd mica (L)
1.4	mer	Code Part		C24	.01 mfd paper
		No. No.	CONDENSERS.	C25	50 mmfd mica (D)
Code Part No. No.	RESISTORS.	CI	4 mmfd mica	C26	16 mfd 350V. Reg. Electro.
RI	350 ohms 1/3W	C2 3661	2-20 mmfd air trimmer	C27	.02 mfd paper
R2	50,000 ohms 1/3W	C3 3661	2-20 mmfd air trimmer	C28	25 mfd 25V. electrolytic
R3	20,000 ohms 1W	C4 7985	Tuning Condenser	C29	.0025 mfd paper
R4	8000 ohms 1W	C5	.05 mfd paper	C30	.1 mfd paper
R5	6000 ohms 2W	C6 3411A	11-29 mmfd air trimmer	C31	.5 mfd paper
R6	100,000 ohms 1/3W	C7	.05 mfd paper	C32	200 mmfd mica (J)
R7	1.75 megohms 1/3W	C8 3658	2-10 mmfd air trimmer	C33	.1 mfd paper
R8	2.3 megohms 1/3W	C9	440 mmfd mica (padder)	C34	.01 mfd paper

Layout Diagram-Models 85, 91, 195 and 200 (Underneath View).

Layout Diagram-Model 312 (Underneath View)