Literally thousands of readers have built the now famous Doerle Short-Wave Radio Receivers. For the thousands of readers who wish to build any, or all of the many Doerle Short-Wave Radio Receivers, this book has been specially created.

Contains everything that has ever been printed on these famous receivers. Four of the most popular sets are described herein. These are the famous sets that appeared in the following issues of Short Wave Craft: "A 2-Tube Receiver that Reaches the 12,500 Mile Mark," by Walter C. Doerle (Dec., 1912-June, 1923); "A 3-Tube "Signal Gripper,"" by Walter C. Doerle (Nov. 1922); "Doerle's 2-Tubes Adapted to A.C. Operation," (July, 1923); "The Doerle 3-Tube "Signal Gripper" Elecified," (August, 1931) and "The Doerle Goes "Band-Spread,"" (May, 1934). Nothing has been left out. Not only are all the DOERLE sets in this book, but an excellent power pack if you wish to electriify any of the DOERLE sets, is also described.

Everything has been brought up to date; it is merely a reprint of what was printed originally, but any improvements on the original sets that were made by readers and various laboratories have been incorporated in this most up-to-date book.

Take advantage of the special offer we are making and use the coupon below.

RADIO PUBLICATIONS
1018 Hudson Street
New York City

ONLY 10 CENTS

Please send immediately your book HOW TO MAKE YOUR DOERLE SHORT WAVE SETS, for which I enclose $1.00 in (U.S. stamps acceptable. Book is to be sent prepaid to me.

Name
Address
City
State

RADIO PUBLICATIONS
1018 Hudson Street, New York, N. Y.

GERNSBACK'S EDUCATIONAL LIBRARY No. 2

HOW TO MAKE THE
MOST POPULAR
ALL WAVE
1 and 2 TUBE RECEIVERS

A.C.
AND BATTERY
LOUDSPEAKER
SETS
Suggest a good book title! Win ten dollars.

SINCE 1906, the name Gernsback has been synonymous with scientific and radio literature. Since that time, many millions of Gernsback magazines and books have been distributed all over the globe.

Recently, Hugo Gernsback decided to place upon the market a new, popular priced series of books under the name of Gernsback's Educational Library. It is the intent of the publisher to continuously add books to the library, from time to time, under various titles. These books will cover a great many subjects, which will not necessarily be restricted to radio or science, but which will encompass many other arts.

It is Mr. Gernsback's plan to have all the books of uniform size. Their price being extremely low, everyone will ultimately be able to possess the entire library, especially since they are purchased piecemeal as the books are published.

Don't forget either, that Gernsback books and magazines always have given you your full money's worth. The present series of books again prove this. Never in the history of technical publishing have you been able to buy so much for so little money. The answer to this is in turning out the books in large quantities.

In bringing out new books, we want your help. Perhaps you have an idea of a certain book title (subject for a new book) that you think we should publish in one of these 10c volumes. If you have such an idea, communicate it to us; we will pay $10.00 for each new book title which we accept. In case of a tie, identical prizes will be paid to the contestants.

Most Popular All-Wave Receivers

THE "MEGADYNE" ONE-TUBE LOUDSPEAKER SET

By Hugo Gernsback

IN this article, the author describes the first practical one-tube loudspeaker set using a pentode tube. The set has been tested experimentally in a number of locations in the metropolitan New York district by several independent experimenters. In all instances, its performance was astonishing; not only did it bring in all locals on the loudspeaker with sufficient volume to fill a large room comfortably, but distant stations as well.

Such stations as KDKA Pittsburgh, WTAM Cleveland, WBZ Springfield, WTAC Hartford, Conn., and many others were received with fair loudspeaker strength.

Experimenters and fans who have looked forward to a REAL one tube set now have their wish fulfilled.

THE advent of the new and more efficient tubes has made it possible to build radio sets which were not dreamed of five years ago. I have often stated editorially, that the radio art is headed in a direction where in the near future, it will be possible to obtain as much volume from a single one-tube set as we formerly obtained with a seven or ten-tube set.

Development of the Megadyne

Some time ago, I started to experiment with the idea of producing a one-tube loudspeaker set that would actually work and could not be classed as "tricky." I thought that the efficiency of the new screen-grid and pentode tubes would make this possible. A few of them were tried in all sorts of circuits, but it was found that no matter how good the usual circuit arrangements were, the volume that could be obtained from a loudspeaker was not sufficient to call it loudspeaker volume.

I then resurrected my old Interflex idea, a circuit that I devised in 1935. This circuit was exceedingly popular at the time and several hundred thousand receivers using this circuit were built all over the world. To those who have forgotten the circuit, and to those

Fig. 1.—Showing "Interflex" Circuit

address all letters to

RADIO TITLE EDITOR
RADIO PUBLICATIONS
101 Hudson Street, N. Y. C.

(Copyright 1935, by H. Gernsback)
Printed in U. S.
who were not in radio at the time, I outline the circuit herewith in its fundamentals:

Figure 1 shows how the crystal detector is connected directly into the grid of a tube. The circuit is not of the reflex type, nor is there regeneration in any form. The crystal in the grid circuit acts as the detector, while the vacuum tube acts as an amplifier. The amplification obtained, depending upon the sensitivity of the crystal, is from 10 to 20, and may be greater in some cases. In other words, by using a crystal detector, the additional amplification of the tube will give real amplification. The circuit is remarkable in that there is no distortion and the reception of the signal is clearer than when the tube is used alone; it being well known by radio engineers that the present vacuum tubes are poor detectors, whereas, due to the perfect rectification possible, there is nothing better than a crystal detector for clarity.

The Interflex system is made use of in the Megadyne (meg for great; dyne from the Greek for power) and the results are astonishing. The final circuit of the one-tube loudspeaker set is illustrated in Fig. 2. It will be seen immediately that an entirely new circuit is used and, as a matter of fact, it will be noted that the tube works "backwards." The positions of the control-grid and the control-grid have been reversed; the writer found that in practice this combination gave far greater amplification than the straight circuit. The reason for this is probably to be found in the better utilization of the space charge.

When building the Megadyne set, be sure to follow the circuit exactly, and for best results use the parts specified. Fig. A and B clearly show the layout of the components on the panel and base board.

Referring again to the circuit, we first have condenser C1, which is used to tune the antenna. Its capacity is .00032-mf. C2 is a small molded bypass condenser. .00005-mf. It is a new addition to the Interflex idea, and is quite necessary in this circuit. It will be found that the circuit does not operate well without the condenser at this point. Remember that all connections between C1 and the control-grid of the tube should be as short as possible. They cannot be too short.

As to the crystal detector, in the Interflex circuit, I recommended the use of a Carbon resistor detector. It is still perhaps the best detector for this purpose, but unfortunately it is no longer manufactured. I therefore substituted a fixed crystal detector which is of the iron-type variety and which works very well in this particular circuit. I do not recommend a galena detector as it is not stable enough. Next to carbon resistor, iron pyrites is the best.

Note that, in this circuit, the crystal detector works best in only one direction. Try reversing its connections, and you will quickly find out which is best. It is not possible to do this on locals as the circuit will be found to work even without the crystal for strong
Most Popular All-Wave Receiver

grid voltage connects to the control grid—the cap of the tube.

And here is some caution is necessary. If you use 135 volts, take a tap of 22½ volts figured from the negative end of the "B" battery. This tap goes to one side of the tickler as shown.

The three circuit tuner as used in this circuit may be any good type as long as it follows specifications. The secondary, wound on a bakelite or ordinary cardboard tube 2½ inches high. The tube is wound full 1½ inches with No. 20 D.C.C. wire. There are 32 turns all together. The tickler measures 1½ inches in diameter and about 1± inches wide. It is wound with the same size and kind of wire as the secondary, and there are 32 turns all together. The three circuit tuner specified has the usual primary. In this set it is not used and no connections are made to it.

Additional Notes

CAUTION. The tap on the "B" battery should not be more than 22½ volts, counting from the — B side. Considerably louder signals may be obtained by increasing this voltage to 45½ volts, and here is where you have to be careful. Certain types of tubes if used with a voltage higher than 22½ will "cherry" the grid, that is—due to the extra current flowing—the grid becomes overtaxed. If you find that the grid gets red hot, disconnect the excess voltage immediately and go back to 22½ volts, as other-

Fig. B.—Bear View Showing Placement of Parts.
signal. It is critical and should be adjusted to the lower wavelength (higher frequencies). Select a station between 200 and 250 meters. The signal should not be too loud. Then with a screwdriver, which should be insulated, begin slowly to adjust the adjustable condenser. You will find that adjusting this condenser also affects the tuning somewhat. It will, therefore, also be necessary to adjust the tuning condenser C1 slightly until you reach a point in your adjustment of C3 where the signal comes in loudest. Some tubes have a tendency to "motorboat"—a sort of clicking, puttering noise is heard in the loud speaker: condenser C3 corrects this condition to a great extent. When the best adjustment has been found for the lower wavelength, leave the condenser and do not touch it thereafter. Do not use too much regeneration because you will then get distortion although the signal will be louder. Best results will be obtained when the set oscillates slightly, or just below the oscillating (whistling) point.

If, in rare instances, you find you cannot get the set to oscillate, try increasing the capacity of condenser C4. A larger condenser here sometimes helps. If the set still refuses to oscillate, it will then be necessary to use a higher voltage on the control grid. Try 45 volts with a series resistance so as to keep the grid from getting red.

Sometimes reversing the polarity of the tube heater or tickler leads helps.

If the set tends to "choke up," indicating that the signal grid is "blocking" it may be necessary to shunt 25 to 7 megohm grid leak across the signal grid (screen grid of the tube) and cathode. This is indicated on the schematic diagram at the points marked "X." It might be well to use a variable grid leak.

Outside of this, the set will probably not be found to be tricky.

Of course, the set may also be used with headphones substituted for the loudspeaker, and in this manner it will be able to get more stations because naturally stations several thousand miles away are not received on the loudspeaker except under unusual conditions. The set is really remarkable for DX work.

One word as to aerial and ground. The specifications given here presuppose an aerial about 125 feet long including lead-in. On shorter or longer aerials, changes should be made in the secondary winding of the coil, although it may be corrected to some extent by using a small series condenser in series with the antenna or ground.

List of Parts
One tuner (for .00032-mf. tuning condenser);
One Hammerlund 320 mmf, variable condenser;
One Type '88 pentode tube;
One Carter 60hm rheostat;
One RMS fixed crystal detector;
One Padder Condenser, .0003- to .001-mf.;
One .00025- (or, .0005-) mf, mica fixed condenser;
One Aerovox .00023-mf. fixed condenser;
One 5-prong tube socket;
Four Eby binding posts;
Five Phenestock clips;
One roll hookup wire;
Two Kurz-Kasch, 1/2-in. knobs;
One Kurz-Kasch vernier dip (scale 0-100, reading clockwise);
One bakelite panel, size 7 x 10 x 3/16-in.:
One baseboard, 5-pry size 7 x 10 x 1/4-in.

Note: Parts of different manufacture may be used, but their electrical specifications must be the same as those specified above.

ELECTRIFYING THE MEGADYNE

FOR 110 VOLTS A. C. or D. C.

By Hugo Gernsback

In the preceding article in this book was described a battery-model "Megadyne," the loudspeaker set that requires only one tube—a pentode, and a crystal. In the following description will be found all the details for operating this remarkable receiver from the house current, thus entirely eliminating batteries.

The only fundamental difference between the battery set and the electric set, is the use of a simple "B" eliminator. The original set was designed to use a "uni-potential cathode" type of tube, the '88, which possesses two outstanding advantages: First, the rugged filament may be operated with full efficiency under wide fluctuation in the filament voltage supply which may be either A.C. or D.C. See
Most Popular All-Wave Receivers

with the aerial of the receiver when used with the D.C. power pack.

Caution: The electrolytic condensers should be of the unpolarized type if the pack is is to be operated on D.C. or else the fuses will blow.

Due to the design of this power unit, it is possible, whether operated from 110 volts D.C. or A.C. to secure very flexible control of the output potentials, by adjustment of resistors 8 and 9. Electrolytic bypass condenser 5 is particularly effective as resistor 8. In addition to acting as a voltage-limiting unit, also functions as a part of the filter system.

In the "breadboard" model, a common "can" connection for the three electrolytic condensers is obtained by mounting them on a strip of aluminum about 3/4 x 5/8 x 3/32-in. thick, supported, 3/4-in. from the baseboard by means of two metal brackets. The new elec-

Fig. 2.—Schematic Diagram. Fig. 1.—Pictorial Layout of Power Unit
trolytic condensers in cardboard containers may be used too, in place of those in cans, if so desired. Resistors 5 and 9 are rheostats mounted on brackets.

Exceptional care has been taken in the design of this unit to reduce the hum level at the output terminals to the lowest possible point; however, the fields of the power transformer and the filter chokes are very strong, and if they are permitted to interact with the receiver equipment, hum from the reproducer will be heard. It is good policy to keep the power pack as far from the receiver as space permits—three feet at least. Resistors 8 and 9 are adjusted so that stations come in loudest. The adjustments are then left in position and should not be touched thereafter.

Tuning and operating the Megadyne remains as before.

List of Parts
One power transformer, having one
6 to 6-volt winding rated at 2 amperes or more; one 5-volt winding at 2 amperes; one center-tapped winding at 275 to 325 volts either side of the center tap;
Two filter chokes, each 30 henries, 35 ma. 500 to 800 ohms 6, 7;
One unpolarized electrolytic condenser, 4 mf, 400 volts, 3;
Two electrolytic condensers, 8 mf., 400 volts, 4, 5;
Two Clarostat variable rheostats, type ES, 0 to 5 megarohm range, 20 watts 8, 9;
One 1—mf, 250-volt condenser, 10;
One fixed resistor, 10,000 ohms, 1 watt, 11;
One binding post strip, 12;
One tube socket, UX-type, for V1, 2;
One power cable, with plug;
One wood baseboard, 7¼ x 11¾ x ½-in.

Most Popular All-Wave Receiver

6 to 6-volt winding rated at 2 amperes or more; one 5-volt winding at 2 amperes; one center-tapped winding at 275 to 325 volts either side of the center tap;
Two filter chokes, each 30 henries, 35 ma. 500 to 800 ohms 6, 7;
One unpolarized electrolytic condenser, 4 mf, 400 volts, 3;
Two electrolytic condensers, 8 mf., 400 volts, 4, 5;
Two Clarostat variable rheostats, type ES, 0 to 5 megarohm range, 20 watts 8, 9;
One 1—mf, 250-volt condenser, 10;
One fixed resistor, 10,000 ohms, 1 watt, 11;
One binding post strip, 12;
One tube socket, UX-type, for V1, 2;
One power cable, with plug;
One wood baseboard, 7¼ x 11¾ x ½-in.

Most Popular All-Wave Receivers

vantages gained through the elimination of the separate rectifier tube. However there has recently been introduced a new tube, known as the type 12A7, which combines a power output pentode and a half-wave rectifier in the same glass envelope—and behold—we have our 1 tube electric set! The completed set is shown in Figs. A and B. The schematic circuit is Fig. 1.

The 12A7 Tube

The tube is the heart of this circuit—without it, the circuit would be impossible. Its characteristics combine those of two regular tubes. The glass envelope, of the standard size known as ST12, is the same size and shape as that used for type 58 and 77 tubes and others: it contains a pentode section practically identical with the type 38 tube, and in addition, a half-wave rectifier element. Each has its own cathode and its own separate base pins. The base is of the small 7-pin type and the control-grid of the pentode is connected to the tube cap. Base connections for the tube are given in Fig. 1.

Construction

As will be seen from the illustration, the set is laid out on an aluminum chassis. The complete layout of the two chassis pieces is given in Figs. 2 and 3. If other than the specified parts are used the layout will, of course, have to be changed accordingly.

The tuning condenser is mounted on the front panel through the medium of two No. 6-32 bolts. Several small washers or other form of spacers are placed over each

Fig. 1.—Set Ready for Operation. Screw between the panel and frame of the condenser to hold it parallel to the front panel.

The filament resistor, R5, is mounted upright through a single hole in the sub-panel by means of one of the screws that will be found holding the brackets. A cardboard tube is generally packed around the resistor on which is marked lines indicating one-eighth of the total resistance; if you do not have available a voltmeter to set the filament voltage across the tube to its proper value it can be arrived at approximately by setting one end sliding contact opposite the first of these marks. This filament resistor becomes quite hot in operation so do not fail to remove the cardboard tube and keep all insulated wires well clear of this resistance.

In mounting the jack for the phone plug be sure that the fram
and lock nut are well insulated from the chassis. Otherwise you will have a direct short across the power supply which will probably ruin the rectifier section of the 12A7 tube. Also be sure that the center arm of the potentiometer R4 is not grounded to the chassis or it will be impossible to control oscillation.

When you are absolutely sure that all wiring is correct, you may insert the line plug and turn on the switch. After a few seconds a bright point of light will be seen inside the cathodes of the tube and they will gradually heat up to a dull red glow. The circuit is then ready to operate. If D.C. is being used, it may be necessary to reverse the plug.

Warning: The post marked “Gnd” on the diagram is not to be connected to a ground unless it is absolutely necessary to do so to secure quiet operation and then only after a 0.5 mf. paper condenser has been inserted between the ground wire and the “Gnd” post on the set. Do not permit the ground wire to touch the metal chassis.

Attach the antenna, and plug in the headphones. Screw the adjusting screw on C1 almost all the way in and turn R4 all the way to the right. Now, on turning the tuning dial from one end to the other a series of squeals should be heard. If this does not occur it indicates that the circuit is not oscillating. Turn back the screw on C1 slightly and try again. Keep trying this until oscillation occurs all over the dial with C1 screwed in as tightly as possible.

The position of C1 will depend greatly on the aerial used. The longer the aerial the looser C1 will probably have to be since a long aerial loads the circuit and keeps it from oscillating. However, a long aerial is necessary for proper pickup and for DX work. About 75 feet, as high as possible and well insulated would be about right.

Once the proper position for C1 is found it may be left alone and the only control necessary will be the tuning dial and R4 for feed back. Like any oscillating circuit the most sensitive point will be found just outside the zone of oscillation. Slow, careful tuning and skillful handling of the oscillation will result in some rather remarkable DX records for such a simple set.

Theory

There is nothing remarkably new in any single feature of the set, the novelty results from the combination of features in a single unit. The signal, picked up by the antenna is fed through C1 to the
Most Popular All-Wave Receiver

into a pure D.C. by the network L4-C6-C7. No condenser is put on the rectifier side of the inductance CH, for two reasons. First, a high value of D.C. voltage is not desirable for grid leak detection; and a condenser input would raise this value considerably. Second, a choke input, as used, tends to lessen the difference between the plate voltage when used on A.C. and D.C. lines.

The resistor R5 serves to drop the line voltage of 120 to the 12.6 required by the filament of the tube. This had better be adjusted tuned circuit C2-L1 and thence through the grid leak and condenser to the grid of the tube where detection takes place. The audio component of the signal is fed from the plate to the tube through the headphones while the radio frequency component of the signal is blocked by the choke L3 and forced to travel through L3-R4 and back to ground through C4. The strength of the radio frequency current in this circuit, and hence the amount of feed back is governed by the resistor R4.

Power is supplied to the plate of the tube through the rectifier portion of the tube which gives rise to a pulsating D.C. This is filtered

Fig. 2.—Front Panel Layout.

Fig. 3.—Sub-Panel Layout.

Most Popular All-Wave Receivers

by means of a voltmeter to the proper value if possible.

Troubles

No Oscillation:

Reverse connections to L2.

Be sure condenser C1 is non-inductive type.

Be sure choice RFC is effective.

Raise screen-grid voltage by decreasing value of R3.

As a last resort increase turns of L2.

Be sure R4 is connected in the right direction; so that when the line switch is off the resistance is all in.

Uncontrollable Oscillation:

Decrease screen voltage by increasing value of R3.

Decrease value of C4.

Remove choke RFC, if this completely stops oscillation decrease value of C5.

Check circuit for unwanted sources of feed-back.

As a last resort decrease turns on L2.

Fringe Field on "Flip":

This is controlled largely by the value of R2; the smaller this value the more smoothly oscillation occurs down to the point where control through R4 is lost. The voltage on the screen-grid is rather critical in this circuit. If it is too low the circuit will not oscillate and will be less sensitive generally. If it is too high it may cause an annoying 60 cycle hum in the phones. The trick is to get it as high as possible without allowing this hum to occur or causing uncontrollable oscillation. This voltage is governed by the network R2, R3,
THE "FOUR-IN-TWO" ALL-WAVE ALL ELECTRIC 2-TUBE SET

By J. T. Bernsley

IT WAS with the realization that short-wave set constructors preferred a set that is economical to build and operate, and employs a minimum of tubes with a maximum of efficiency, that this receiver was designed.

Before discussing the relative merits of the circuit, and the theory involved, it would undoubtedly be of greater interest to the constructor to learn, first, just what this set can do. Well, in the first place, it will operate a loudspeaker (magnetic, or permanent magnet dynamic types) on most signals transmitted within a radius of 750 miles. On broadcast tests, conducted in a steel office building in New York City, stations 1,500 miles away were heard in with fair loudspeaker volume.

On short waves, police calls all over the country were more than comfortably heard on the loudspeaker. Foreign broadcasts, on short waves, were received from numerous countries. At the time of these tests LSYY in Argentina, South America, was heard with good loudspeaker volume. Also YV3RC, in Venezuela, with exceptionally good volume. DJO, in Berlin, Germany, was tuned in (on loudspeaker) consistently for several weeks. Amateur radiophone stations in abundance, to delight any ham or other interested listener, were received in the various bands assigned to amateur phone communication.

Using only two tubes, and of the most unique types that have ever been produced, it is possible to obtain full four-tube results. The set is distinctly designed for electric operation, either 110 V. D.C., or A.C. (of any frequency), but only this combination of tubes, as will be explained later, will permit such operation—and the equivalent performance of four tubes. By using conventional plug in coils, the complete short-wave range of from 15 to 290 meters is covered.

Broadcast Reception, Too!

However, the necessity for ever-changes coils to cover various wave-bands is reduced considerably by a special feature included within the tuning circuit. This consists of a tandem 140 m.m.f. two-condenser gang, one section of which is constantly in the tuning circuit—the other section inserted at will (in parallel), to increase the total effective tuning capacity from the front panel by means of a toggle.
Most Popular All-Wave Receiver

switch mounted as shown in Fig. A. Thus, not only does this feature facilitate a wider tuning frequency range, but should the constructor desire to use this set for regular broadcast reception (using a broadcast plug-in coil from which a few secondary turns are removed) he will find that the operation is much more highly efficient and satisfactory. This may be attributed, in engineering parlance, to an "improved L/C ratio.

Circuit Design

Referring to Fig. 1 it will be noted that the two tubes employed are the new "multi-purpose" types 6F7 and 12A7. The 6F7 tube really comprises two tubes in one glass envelope, a pentode and a triode. In this receiver the pentode section is employed as the regenerative detector, and the triode section as the first audio stage. Thus, two-tube efficiency is obtained from this single tube. The 12A7 also comprises two tubes in one glass envelope, but the type of operation and arrangement of the elements within the tube are entirely different. Here we find a power pentode (whose characteristics are identical with the 38 power tube) and a half-wave rectifier all in one unit. By using the power pentode section of this tube as the final power audio stage, and the half-wave rectifier for rectifying the alternating current, when it is operated from A.C. (on D.C. the direct current continuously passes through the tube) we obtain two-tube efficiency from this single tube. The net total, as a result of this arrangement, is full four-tube efficiency from two tubes. No re-

flexing or other tricks, just a straightforward regenerative detector followed by two stages of resistance-coupled audio amplification, the final stage being a power audio, and a rectifier or "B" supply—all from two tubes.

The heaters of these two tubes are wired in series, thus requiring a filament voltage of 15 V. and a current of 0.6 of an ampere (or 600 ma.). This is obtained from the power line by means of a series resistor (325 ohms), or a power cord in which this value of resistance is included. No power transformer, or any other transformer whatsoever, is employed. The 110 V. supply—A.C. or D.C.—is fed directly to the half-wave rectifier section of the 12A7 tube. The efficiency of this rectifier is such that the voltage drop through it may be considered as being almost negligible. Since resistance coupling is used in the audio stages, no audio transformers are necessary.

Two low-resistance power chokes (only 100 ohms resistance, approx. each) are employed in the filter section. This design, coupled to the use of three electrolytic condensers, completes the filtering arrangement, as shown in Fig. 1, and has been found more than sufficient to remove any trace of ripple or hum.

Regeneration is obtained by inductive coupling of the "plate" winding to the secondary or "grid" winding. It is controlled, however, by a mid-gate 140 mmf. variable condenser (mounted under the sub-base, as shown in Fig. A which regulates the amount of R.F. energy existing in the plate circuit.

Regeneration may also be controlled by the volume control which is shunted across the plate coil and thus serves as a controlled short-circuiting device to regulate volume or regeneration. For broadcast reception this control will be found considerably more effective for regeneration regulation. It is recommended that the single variable condenser be used on short-waves for this purpose, and left at maximum capacity for the broadcast band in which case the volume control is used in its stead.

List of Parts

One Hammerlund tandem, dual-section, 140 mmf. (each) variable condenser gang;

One complete set of plug-in coils (5, with broadcast coil, 4 only for complete short-wave coverage);

One single Hammerlund midget
variable condenser, 140 mfg.:
Two General Transformer chokes, 85 hy., 100 ohms each:
One Hammerlund R.F. choke, 85 mhy.
Two Cornell-Dubillier electrolytic condensers, 16 mfg., 200 V.
One Cornell-Dubillier electrolytic condenser, 8 mfg., 220 V.
Two 7 prong wafer sockets (small) for 12AT7 and 6P7 tubes:
One 4 prong wafer socket for plug-in coils:
One I.R.C. resistor, 1,500 ohms, 1 W.
One I.R.C. resistor, 1-meg., 1 W.
Two I.R.C. resistors, .25-meg., 1 W.
One I.R.C. resistor, .5-meg., 1 W.
One I.R.C. resistor, 750 ohms, 1 W.
One I.R.C. resistor, 2 meg., 1 W.
One wire-wound resistor, 325 ohms, 40 W. size, or power cord with equiv. resistor built-in:
Two B.P.S.T. toggle switches:
One volume control, 50,000 ohms:
Two Cornell-Dubillier tubular condensers, .1 mfg., 400 V:
Two Cornell-Dubillier tubular condensers, .908 mfg., 400 V.
One Cornell-Dubillier mica condenser, .001 mfg.
One Cornell-Dubillier electrolytic condenser, 10 mfg., 50 V.
One antenna trimmer condenser:
One drilled sub-base and panel unit (as shown in illustrations):
One type 12AT7 tube:
One type 6P7 tube:
Miscellaneous supplies, such as wire, hardware, vernier dial, etc.
Note: These parts may be of different manufacture but must have the same electrical specifications.

Conclusion

This receiver, if wired carefully and as per Fig. 1, should operate to the complete satisfaction of any constructor. The adjustment of the antenna trimmer condenser may be rather critical if an antenna system of relatively long dimensions is employed. For best results use a short overhead wire (about 25 ft.) placed as high as possible.

SUPER-REGENERATIVE SINGLE-TUBE LOUDSPEAKER SET

By W. P. Chesney

YEARS ago, when radio was being developed by the experimenter and the amateur, a one tube loudspeaker set was the ultimate goal of every constructor. Various types of circuit combinations and forms of receivers were tried and built, and in a good many cases actual loudspeaker results with one tube were obtained. In favor of other fads or fancies, interest in developing maximum efficiency from a single tube waned. The constructor became caught in a maestrom of other intriguing possibilities of radio which took his attention away from this most interesting and worthwhile work. But now, with interest being resumed in small receivers, as evidenced by the increasing popularity of the midget set, and since more highly developed tubes—from an angle of sensitivity and power output—are available—the constructor and experimenter is once more focusing his attention in this direction.

To the uninstructed, it is not desired to convey the impression that it is possible to construct a one tube set that will duplicate the efficiency of a five or six tube set. What is emphasized is that no machine or electrical device is anywhere near 100 per cent efficient. Particularly is this true in the case of a vacuum tube. And since there is room for improvement in this case, through careful study of the problems involved and careful construction of the receiver, it is more than possible to make one tube operate a loudspeaker (with fair sensitivity) to the satisfaction of the user.

Since only one tube is employed, its function is limited to that of detection, or rectification as some term it, essentially because the high-frequency signals fed to the tube by the tuning cell and condenser arrangement must be converted to D.C. (of a pulsating nature) so as
Most Popular All-Wave Receiver

material can readily be obtained. The coil must be especially made by the constructor, and is wound on a 1 in. diameter form, about 3 ins. long. The secondary, L1, consists of 110 turns of No. 32 enamelled covered wire. The primary L2, or plate coil winding consists of 45 turns of No. 35 D.S.C. wire wound below the grounded end of the secondary. The suggested layout and construction are shown in Figs. A and B.

Adjustment and Tuning

If the set seems to be insensitive then the trouble is possibly due to the connections to the coil winding L2 being reversed. This winding must be in proper phase relationship to L1 or else regeneration will not take place. Fixed condensers, C3, C4, and C5, must be exactly specified and micro-electric type is recommended to reduce the losses and inconsistencies that occur in the paper type. It is through these condensers that the super-regenerative action is obtained. A 100 m.mf. fixed condenser may be connected across the output terminals, but will not be necessary in all cases. Its inclusion will be
Most Popular All-Wave Receivers

necessary if a persistent whistle takes place—but in some cases will also help to actually increase the volume. R2 controls the volume and stability of the receiver, by regulating the filament temperature of the tube. Stations are obtained by simply turning the variable condenser, C1.

To obtain good loudspeaker volume, a high impedance magnetic type loudspeaker is recommended. It should preferably be of a "close" gap construction, which feature makes the unit highly sensitive, though it might tend to chatter a little on extreme volume.

Too large an antenna for this receiver should not be used. It may dampen the sensitivity of the set instead of increasing its efficiency. An approximate total length of 75 feet will be found to be ideal.

In Fig. 1 are given optional coil winding data.

A ground is not always necessary; it should be tried, though. Connect it to the end of L1 opposite the antenna connection (or, the junction of L1, C1, C3 and C5).

List of Parts

One 500 mmf. variable condenser, C1;
One mica fixed condenser, 250 mmf., C2;
Two mica fixed condensers, .006-
mf., C3, C4:
One fixed condenser, 250 mmf., C5;
One resistor, 1 meg., R1;
One 15 ohm rheostat, R2;
Miscellaneous parts, such as 5 prong socket, hardware, chassis base, binding posts, 33 tube, and magnetic type loudspeaker.

tubes are employed: a type WX-12 ("general purpose") and a type '33 audio pentode. The reason for this particular combination will be pointed out later. The carrying case is that belonging to a small portable typewriter; but any suitable box may be employed, or one can be made especially for the purpose. The folding loud speaker is built into the cover. One dry cell supplies the filament voltage; while four of the smallest sized 22½-volt "B" batteries provide the plate potential.

The circuit is a simple regenerative one, employing one of the small three-circuit tuners so popular a few years ago. While the tone quality is not comparable with that of the modern receiver, with dynamic reproducer and power amplifier, it is equal to that obtained from a small portable photograph; and on locals, and for distances up to a thousand miles, the volume is loud enough for filling a large room.

The WX-12 tube was selected, not only because it is a good detector, but also because its required filament potential (1.1 volts, requiring only one "A" cell) fits in with the design of the set.

Fig. 1 shows the final schematic circuit. The three-circuit tuner (comprising the primary, secondary and tickler coils L1, L2, L3, respectively) has the secondary L1 tuned by the .00035-mf. midget variable condenser C3; this covers the broadcast band. The grid condenser C1 has a capacity of .00025-mf. and is shunted by the grid leak R3 of 2 megohms. R1 is a fixed filament resistor of 1.5 ohms. An Amperite or filament rheostat may be used, or a fixed resistor may be used, or a fixed resistor with an adjustable contact.

The bypass condenser C2, which shorts the audio transformer T, has a capacity of .0005-mf. The "A," "B" and "C" voltages are indicated on the sketch. The loudspeaker unit L.S. is of the horn type and should have a low impedance, in the order of 7000 ohms;

PORTABLE TWO-TUBE BATTERY LOUDSPEAKER RECEIVER

WHILE formerly several tubes requiring heavy batteries of large capacity were employed in portables to obtain loudspeaker volume, now the pentode with its loud-speaker output can be used alone with a minimum of battery space and weight.

In the set illustrated, only two...
Most Popular All-Wave Receiver

Fig. A.—Closed View of Portable.

although any good horn unit may be used.

The illustrations Figs. A and B and Fig. 2, show the general layout. The parts are mounted directly on the case; with the tickler and tuning condenser knobs, and the filament switch, on the handle side, or top (when closed, as shown). The batteries and dry cell are securely fastened to the bottom of the case by means of a thin strip of brass bent around them and secured at each end to the case with small wood screws. The four binding posts, for aerial, ground, and loud speaker, are mounted on a bakelite strip 3/16 by 5/8 by 5/4 in, which is attached to the case with two angle brackets. The tube sockets are mounted on the sides of the case as shown.

Novel Loud Speaker

The loud speaker used in this set is somewhat novel. While not of the best design from an acoustical standpoint, it works very well and occupies little space. The horn structure is shown in Fig. 3. A piece of 1/4-inch plywood, which will fit snugly within the cover, is hinged to it as shown. Near the hinged side is bored a hole (X, Fig. C) to receive the throat of the

Most Popular All-Wave Receivers

List of Parts

One "Corona" typewriter carrying case, 10 3/4 x 9 1/2 x 4 inches deep (inside dimensions); One Gen-Win 3-circuit tuner (L, L1, L2); One Hammerlund .00056-mf. mid-
gut variable condenser (C3); One Polymet .00056-mf. grid condenser (C4); One Polymet .0005-mf. by-pass condenser (C2); One 2-meg. grid leak (R); One Carter 15-ohm resistor (R1); One "replacement"-type A.F. trans-
former (T); Two Burgess 3-cell flashlight bat-
tteries ("C"); One Burgess 1.5-volt dry cell ("A"); Four Burgess 22.5-volt batteries ("B"); One 4 prong socket (for V1); One 5 prong socket (for V2);

BEGINNERS' ONE-TUBE ALL-WAVE BATTERY SET

By F. R. Harris

ROADCAST wavelengths and
the programs they carry are
very interesting, but the vast
thrill of radio lies in the short
wavelengths — the higher fre-
cuencies — on which it is possible to
pick up programs of all kinds from
the very ends of the earth! This
receiver is designed to receive
both!

Don't get the idea, though, that
this means complication and
difficulty.

The set we are building is the
simplest and one of the best bread-
board styles. It is designed for the
absolute beginner who is neither
radio man nor mechanic, and yet
it will equal or better the perform-
Most Popular All-Wave Receiver

Amateur 1,800 to 2,000 166 to 150
Phone 3,900 to 4,000 76.8 to 74.9
14,150 to 14,250 21.2 to 21.1
28,000 to 28,500 10.7 to 10.5
56,000 to 60,000 5.3 to 4.9

The set we are building is designed to cover all of these bands from 550 to 18,000 kc. (545 to 16 meters), which should be ample to give a real introduction to the world of short waves; after which—unless we miss our guess—you will be, "rarin' to go," to build a more elaborate layout with greater range.

Construction

The first step in construction is to get together all the material specified in the List of Parts; the necessary tools; and a fairly large, firm table upon which to work. Tool requirements are simple: a mudding- and a small-size screwdriver; a pair of diagonal cutters; a pair of thin, long-nose pliers and a second pair of sturdy construction; a wood saw; a plane; a flat file and a rat-tail file; a hand-drill and a few drills (one No. 18 and one \(\frac{3}{4} \)-in. will be enough to start); a soldering iron (preferably electric) and some resin cloth solder. Of course, you can use many more tools, if you have them, but those mentioned above will be enough to do the job.

Cut the baseboard to size (its dimensions accommodate all the batteries), clean it up with the plane and sandpaper, and give it a coat of shellac—always put a "Sunday dress" on your work; you’ve no idea how it adds to your reputation as a radio man among those to whom the technical details are just so many long words!

Cut the aluminum panel to size (if you didn’t buy it that way) with a wood saw—it won’t hurt the saw. Smooth the edges of the panel with the plane. Next, lay out and drill the three small holes along the bottom for mounting; also the two larger holes for the condenser and potentiometer. If you have a drill of the proper size for these last mentioned holes use it; otherwise, use the largest you have and enlarge the holes with the rat-tail file. Don’t scratch the panel all up while working on it as that spoils the whole appearance of the set. Always put a piece of light cardboard between the panel and table top when you hold it down for drilling; and clean away all chips from underneath.

Now fasten the panel to the front of the baseboard and mount all the parts.

A word regarding the antenna system may not be amiss here, since the builder of this set is supposed to be an absolute beginner. For best short-wave results the antenna should be as high as possible and strung clear of everything else; particularly, it should be kept away from trees and be well insulated. Two 3 or 5-in., high-grade insulators at each end will give excellent results. The best all around wire for antenna purposes is No. 14 solid enamel, about 50 ft. long. The aerial should be pulled tant so that it cannot swing in the wind and thus cause fading. Springs are sold to be placed at the end of aerials for this purpose and their use is advisable.

The lead-in can be made of No. 14 rubber-covered wire securely soldered to the aerial at one end; form a loop so as to allow the aerial to move slightly without eventually causing a break at this joint. Insulators, holding the wire several inches from the building, should be used at intervals along the length of the lead-in. A lighting arrester on the outside of the building and going to an outside ground is advisable, particularly in rural regions. The lead-in is carried into the house through a porcelain tube which is mounted in the window frame.
Most Popular All-Wave Receivers

Slant the tube upward so that it will shed water. Don't under any circumstances, use one of those flat contraptions that is supposed to go under the window.

Inside the house, the set should be grounded with a wire, as short as possible, to the cold water piping. If convenient, this connection should be made on the street side of the water-meter as they sometimes have fiber bushings in them which break the electrical continuity of the pipe. If this is so in your case and you cannot conveniently run the line direct, at least "jump" the meter with a wire securely fastened to each side, in country districts without piped water an excellent ground can be made to the pump frame, or to one or more pipes driven 5 to 10 ft. into the ground. This may all seem very elaborate, but remember that the finest set made will operate better on an antenna system as described and it will surely operate our little set better. Furthermore, every point noted is important even on broadcast sets and becomes more and more as the frequency is increased (wave-length reduced).

In locations particularly "tough" for reception it may be necessary to experiment with the direction of the aerial as this sometimes makes an appreciable difference.

Trouble Shooting

The set is so simple in design that trouble is not likely to occur; the foremost possibility, however, is lack of circuit oscillation. If the circuit will not oscillate, the first thing to do is to reverse the connections to both F on the coil socket. The grid leak, RL, is also a factor in producing oscillation. Values from 1 to 10 megs. may be tried in this position. It may be necessary, particularly in the smallest coil, to add a turn or two to the tickler (the coil between 4 P and F socket terminals). Since the tube must be a good one—a poor tube will not oscillate—before going into the business of adding turns it might be well to try another tube.

And while on the subject of tubes, heed the warning that the 2 V, series of tubes are very delicate and must be handled with extreme care. They will not stand an overload on the filament—if this occurs, either from too much plate current or too much filament voltage—the emission from the filament is destroyed and the tube is rendered useless. In this particular circuit do not put more than 67½ V. of "B" battery in use (less, if possible).

Coil Data

It is advised that the beginner purchase a set of coils already wound, but if desired he may wind coils to the data given in Fig. 3. The coils are all wound on standard short-wave plug-in forms 1½ ins., diameter x 2½ ins. long, four prong. The tuned winding is connected between the grid prong and one filament prong and the tickler between the plate and the other filament.
List of Parts

One tuning condenser, 140 m.m.f., C1;
One 5 to 70 m.m.f. antenna compensating condenser, C2;
One 350 m.m.f. mica grid condenser, C3;
One .003-mf. mica condenser, C4;
One .1-mf. non-inductive paper condenser, 200 V., C5;
One 2 meg. grid leak, R1;
One 50,000 ohm wire-wound potentiometer, R5;
One 4-prong socket for coils L1-L2;
One 5-prong spring mounted socket for the tube;
Four spring binding posts;
One wood baseboard, 8½ x 9 x 5/8 in.;
One aluminum panel, 8½ x 6 x 1/16 in.;
One type 33 tube, V1;
One pair of sensitive headphones;
One roll of push-back hook-up wire;
Three 23½ V. small "B" batteries;
One 2 V. storage cell;
Small screws;
Four Phenolstock clips;
One vernier dial.